
www.manaraa.com

RE 2012

Assessing requirements-related risks through probabilistic goals
and obstacles

Antoine Cailliau • Axel van Lamsweerde

Received: 16 November 2012 / Accepted: 20 March 2013 / Published online: 25 May 2013

� Springer-Verlag London 2013

Abstract Requirements completeness is among the most

critical and difficult software engineering challenges.

Missing requirements often result from poor risk analysis at

requirements engineering time. Obstacle analysis is a goal-

oriented form of risk analysis aimed at anticipating

exceptional conditions in which the software should

behave adequately. In the identify-assess-control cycles of

such analysis, the assessment step is not well supported by

existing techniques. This step is concerned with evaluating

how likely the obstacles to goals are and how likely and

severe their consequences are. Those key factors drive the

selection of most appropriate countermeasures to be inte-

grated in the system goal model for increased complete-

ness. Moreover, obstacles to probabilistic goals are

currently not supported; such goals prescribe that some

corresponding target property should be satisfied in at least

X % of the cases. The paper presents a probabilistic

framework for goal specification and obstacle assessment.

The specification language for goals and obstacles is

extended with a probabilistic layer where probabilities

have a precise semantics grounded on system-specific

phenomena. The probability of a root obstacle to a goal is

thereby computed by up-propagation of probabilities of

finer-grained obstacles through the obstacle refinement

tree. The probability and severity of obstacle consequences

is in turn computed by up-propagation from the obstructed

leaf goals through the goal refinement graph. The paper

shows how the computed information can be used to pri-

oritize obstacles for countermeasure selection toward a

more complete and robust goal model. A detailed evalua-

tion of our framework on a non-trivial carpooling support

system is also reported.

Keywords Obstacle analysis � Risk assessment �
Probabilistic goals � Requirements completeness �
Goal-oriented requirements engineering � Risk analysis �
Quantitative reasoning

1 Introduction

Missing requirements and assumptions are reported as one

of the major causes of software failure [22]. Incomplete-

ness often results from unanticipated conditions under

which the software should behave adequately. A natural

inclination to conceive systems that are too ideal prevents

adverse conditions from being properly identified and,

when likely and critical, resolved through appropriate

countermeasures.

Risk analysis should thus be at the heart of the

requirements engineering process [4, 13, 20, 22, 27]. A

risk is commonly defined as an uncertain factor whose

occurrence may result in some loss of satisfaction of

some corresponding objective. A risk has a likelihood of

occurrence, and one or several undesirable consequences

associated with it. Each consequence is uncertain as

well; it has a likelihood of occurrence if the risk occurs.

A consequence has a severity in terms of degree of loss

of satisfaction of the corresponding objective. The like-

lihood of a risk should not be confused with the likeli-

hood of a consequence of the risk. For example, the
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likelihood of the risk of the GPS device not working

inside an ambulance is not the same as the likelihood of

the consequence that the ambulance might get lost when

this risk occurs.

Depending on the category of objective being obstruc-

ted, risks may correspond to safety hazards [25, 26],

security threats [2, 21], inaccuracy conditions on software

input/output variables with respect to their environment

counterpart [20], and so forth.

Risks must be identified, assessed against likelihood and

severity, and controlled through appropriate countermea-

sures [7, 16, 22, 27].

• At requirements engineering time, risks can be system-

atically identified from prescriptive requirements and

descriptive domain properties [20].

• For risk assessment, qualitative scales can be used for

quick but rough estimation of likelihood and severity

[12], possibly in relation with a requirements model

[4]—e.g., from ‘unlikely’ to ‘very likely’ and from

‘low’ to ‘highly critical,’ respectively. Alternatively,

quantitative scales can be used to capture such

estimates more precisely [6, 13], possibly in relation

to a requirements model [30].

• For risk control, we may explore alternative counter-

measures and select the most effective ones [13]. Such

exploration may be driven by risk-reduction tactics

such as reduce risk likelihood, avoid risk, reduce

consequence likelihood, avoid risk consequence, or

mitigate risk consequence [22].

In goal-oriented modeling frameworks, obstacles were

introduced as a natural abstraction for risk analysis [3, 19].

An obstacle to a goal is a precondition for the non-satis-

faction of this goal. Obstacle analysis includes three steps

[20]:

(a) Identification: as many obstacles as possible to every

leaf goal in the goal refinement graph should be

identified from relevant domain properties.

(b) Assessment: the likelihood and severity of each

obstacle should be determined.

(c) Resolution: likely and critical obstacles should be

resolved by systematic model transformations in order

to integrate appropriate countermeasures in the goal

model. Alternative resolutions typically encode the

aforementioned risk-reduction tactics.

Obstacle analysis has been successfully used in a variety

of mission-critical systems, see e.g., [11, 28].

The risk/obstacle assessment step is obviously crucial

for focusing the resolution step on those risks that are

determined to be likely and have likely and severe conse-

quences. No systematic techniques are available to date to

support this step.

To fill this gap, the paper presents a simple yet effective

technique for quantitative risk assessment. This technique

is intended to meet the following objectives.

• Formal semantics for statements to be assessed: Unlike

[4, 13, 27], the specification of goals and risks should

have a clear, precise semantics in terms of desirable/

undesirable system behaviors. Such semantics enables

their precise interpretation and the integration of risk

assessment with other techniques for risk generation [1,

20], countermeasure derivation [20], and goal model

analysis, including goal refinement checking, opera-

tionalization checking, and behavior model synthesis

[22].

• Measurable statements: Unlike [4, 13], the specification

of goals and risks should be grounded on application-

specific phenomena that are measurable in the envi-

ronment of the software-to-be. This attenuates the

common problems with subjective estimations. For the

importance of making requirements measurable, see

[29].

• Model-based assessment: Unlike [13], the assessment

process should take advantage of the refinement

structure provided by the goal/obstacle model to allow

for more accurate estimation of probabilities of coarser-

grained statements from finer-grained ones.

• Probabilistic requirements: Unlike the existing tech-

niques, requirements that prescribe some property to

hold in at least X % of the cases should be supported

and integrated within the assessment framework.

Partial degrees of goal satisfaction are introduced in [24]

for evaluating alternative system options. They are speci-

fied through objective functions on random variables

associated with the corresponding goals. These variables

are refined according to the goal refinement structure pro-

vided by the goal model. The degrees of goal satisfaction

are determined bottom-up by computing the probability

density function of higher-level variables from the proba-

bility density functions of lower-level ones. This results in

accurate estimations at the price of extra variables to be

identified and fairly complex computations on them.

Bayesian networks might also be used for making predic-

tions about partially satisfied assertions [14]. Their con-

struction and validation does not, however, take advantage

of the available goal structure and turn to be very difficult

for complex systems.

The technique presented in this paper for determining

the probability of obstacles, and the probability and

severity of their consequences is intended to be simpler as

it exploits the goal/obstacle refinement structure and

propagates probabilities directly along that structure.

As a result, obstacles can be sorted by degree of criti-

cality. Such ordering can then be used for guiding the
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selection among alternative countermeasures identified

through risk-reduction tactics [20, 22]. We thereby obtain

more evidence-based answers to questions such as, e.g.,

what are the most critical obstacles to be resolved in view

of the high-level, safety–critical goal stating that ‘an

ambulance shall be on the incident scene within 14 min in

95 % of cases’?

The paper is organized as follows. Section 2 introduces

some necessary background on goal-oriented modeling and

obstacle analysis. Section 3 introduces our model-based

probabilistic framework for goals, obstacles, and their

refinements. Section 4 shows how obstacle probabilities are

up-propagated through obstacle refinement trees and how

obstacle consequences are up-propagated through the goal

model. Section 5 discusses the identification of critical

obstacle combinations to be resolved, based on a prioritization

of obstacles according to the severity of their consequences.

Section 6 reports on our evaluation of the technique on a

carpooling support system. Section 7 discusses related work.

2 Background

Some necessary rudiments on goal-oriented requirements

engineering are first recalled (Sect. 2.1) before known results

on obstacle analysis are briefly summarized (Sect. 2.2).

2.1 Goal-oriented system modeling

A goal is a prescriptive statement of intent to be satisfied

by the agents forming the system. The word system refers

to the software-to-be together with its environment,

including pre-existing software, devices such as sensors

and actuators, people, etc. Unlike goals, domain properties

are descriptive statements about the problem world (such

as physical laws).

A goal may be behavioral or goal dependent on whether

it can be satisfied in a clear-cut sense or not. In the context

of risk analysis, this paper focuses on behavioral goals.

A behavioral goal captures a maximal set of intended

behaviors declaratively and implicitly; a behavior is a

sequence of system state transitions. A behavior thus vio-

lates a goal if it is not among those prescribed by the

formal specification of the goal [22].

Linear temporal logic (LTL) may be used for formal-

izing behavioral goals to enable their analysis. The goals

then take the general form

C ) H T

where H represents a LTL operator such as: o (in the next

state), e (sometimes in the future), eBd (sometimes in the

future before deadline d), h (always in the future), hBd

(always in the future up to deadline d), W (always in the

future unless), U (always in the future until), and where

P ) Q means h (P?Q). The following standard logical

connectives are used: ^ (and), _ (or), : (not), ? (implies),

$ (equivalent).

A behavioral goal can be of type Achieve or Maintain/

Avoid [22]. The specification pattern for an Achieve goal is:

if C then sooner-or-later T ;

that is; C ) }T ; ðAchieveÞ

where C denotes a current condition and T a target condition,

with obvious particularizations to Immediate Achieve,

Bounded Achieve, and Unbounded Achieve goals [22].

The specification pattern for a Maintain (resp. Avoid) goal is:

½if C then� always G ðresp: ½if C then� never BÞ;
that is; ½C )�hGðresp: ½C )�h:BÞ; ðMaintain=AvoidÞ

where G and B denote a good condition and a bad condition,

respectively. (Brackets are used here to delimit optional parts in

those patterns.)

A behavioral goal must obviously be consistent with all

known domain properties, that is,

G;Domf g 2 false ðdomain-consistencyÞ

A goal model is an AND/OR graph showing how goals

contribute positively or negatively to each other [10, 15,

21]. Parent goals are obtained by abstraction, whereas child

goals are obtained by refinement. Refinement paths connect

goal nodes in this graph to their ancestor nodes. Leaf goals

are assignable to single system agents; they are

requirements or assumptions dependent on whether they

are assigned to the software-to-be or to an environment

agent, respectively. Graphically, goals are represented by

parallelograms, domain properties by ‘home’ shapes and

agents by hexagons, see Fig. 1.

Fig. 1 Partial goal model for an ambulance dispatching system
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Refinement patterns are available to help building goal

models, e.g., the Milestone-Driven, Case-Driven, Guard-

Introduction, Unmonitorability-Driven, Uncontrollability-

Driven, or Divide-and-Conquer patterns [10, 21].

In Fig. 1, the two top refinements are milestone-driven

(with AmbulanceAllocated and AmbulanceMobilized as

milestone conditions, respectively), the refinement in the

middle is case-driven (with AmbulanceOnRoad and Am-

bulanceAtStation as case conditions), and the bottom

refinement fits no specific pattern. For example, the top

goal is more precisely specified as follows:

IncidentReported ) }� 14min AmbulanceOnScene

Its two subgoals are obtained by application of the

Milestone-Driven refinement pattern with

AmbulanceAllocated as milestone condition:

IncidentReported ) }� 1min AmbulanceAllocated

AmbulanceAllocated ) }� 13min AmbulanceOnScene

AND-refinements in a goal model should ideally

be correct, that is, complete, consistent, and minimal [10, 21].

• A refinement is complete if the satisfaction of all

subgoals is sufficient for the satisfaction of the parent

goal in view of known domain properties:

SG1; . . .; SGn;Domf g � G ðcomplete refinementÞ

• A refinement is consistent if no subgoal contradicts

other subgoals in the domain:

SG1; . . .;SGn;Domf g 2 false ðconsistent refinementÞ

• A refinement is minimal if all the subgoals are needed

for the satisfaction of the parent goal:

f^j 6¼i SGj; Domg2G for all i ð1� i� nÞ
ðminimal refinementÞ

A goal refinement obtained by instantiation of a

refinement pattern is formally guaranteed to be complete,

consistent, and minimal [10]; the correctness proof is done

once for all on the temporal logic formalization of the

pattern. The partial goal model in Fig. 1 shows three

complete, consistent, and minimal AND-refinements; the

bottom refinement is complete and consistent.

In a goal model, goals may be connected by conflict

links if the goals are potentially conflicting. Goals are

potentially conflicting (or divergent) if there exists a sat-

isfiable and non-trivial boundary condition making them

logically inconsistent in the domain [21]:

B;G1; . . .;Gn;Domf g � false; B;Domf g 2 false ðconflictÞ

2.2 Obstacle analysis

An obstacle to a goal is a domain-satisfiable precondition

for non-satisfaction of this goal [19]:

O;Domf g � :G ðobstructionÞ
O;Domf g 2 false ðdomain-consistencyÞ

Similar to goals, obstacles can be AND/OR refined into

sub-obstacles, resulting in a goal-anchored form of risk tree

[21]. In an obstacle tree,

• the root obstacle is the negation of the associated leaf

goal in the goal model;

• an AND-refinement captures a combination of sub-

obstacles entailing the parent obstacle;

• an OR-refinement captures alternative ways of entailing

the parent obstacle—and, recursively, of obstructing

the corresponding leaf goal;

• the leaf sub-obstacles are single, fine-grained obstacles

whose likelihood can be easily estimated.

Each sub-obstacle in an OR-refinement must entail the

parent obstacle:

SOi;Domf g � O for all SOi ðentailmentÞ

OR-refinements should ideally be domain complete and

disjoint:

:SO1; . . .;:SOn;Domf g � :O ðdomain-completenessÞ
SOi; SOj;Dom
� �

� false for SOi 6¼ SOj ðdisjointnessÞ

Formal and heuristic techniques are available for the

identification of obstacles [1, 19] and for the generation of

alternative countermeasures [19]. In particular, for the

Achieve and Maintain/Avoid goal specification patterns

introduced in Sect. 2.1, specific domain properties are worth

eliciting. They take the form:

always if CSQ then N;

that is;CSQ) N;

where N denotes a necessary condition for the consequent CSQ

of a leaf goal; CSQ is the target condition T of an Achieve goal

C ) eT or the good condition G of a Maintain goal C ) hG.

Such domain properties result in obstacles taking the form:

sooner-or-later C and never N;

that is;}ðC ^h:NÞ

for an Achieve goal, or

sooner-or-laterðC and sooner-or-later not NÞ;
that is; }ðC ^ }:NÞ

for a Maintain goal.
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Consider the goal Achieve [AmbulanceOnScene-

WhenMobilized] in Fig. 1 whose target condition is

AmbulanceOnScene:

AmbulanceMobilized ) }� 11min AmbulanceOnScene

Negating this goal yields the root obstacle:

}ðAmbulanceMobilized ^h� 11min:AmbulanceOnSceneÞ

The necessary conditions for the target include the

following:

AmbulanceOnScene) :AmbulanceInTrafficJam

This yields the bottom left sub-obstacle in Fig. 2, namely:

}ðAmbulanceMobilized
^h� 11min AmbulanceInTrafficJamÞ

3 A model-based framework for capturing

probabilistic goals and obstacles

The probability of satisfaction of a goal depends on the

probability of occurrence of obstacles obstructing it. The

severity of the consequences of an obstacle depends on the

difference between the prescribed degree of satisfaction for

the obstructed goals and the estimated probability of sat-

isfaction of these goals in view of their possible obstruction

by obstacles. This section defines these various notions

more precisely.

3.1 Probabilistic goals

As seen before, a goal defines a maximal set of intended

behaviors. The probability of goal satisfaction is defined in

terms of the probability of observing one of those behav-

iors. The paper considers finite-behavior systems only. To

simplify the presentation, the goal formalizations are

propositional; our probabilistic framework is, however,

applicable to first-order formalizations as well.

For a behavioral goal C ) HT, we are obviously

interested in non-vacuous satisfaction, leaving aside those

trivial cases where the goal is satisfied due to C being false.

We therefore focus our attention on behaviors where the

goal antecedent C is satisfied.

Definition 1 The probability of satisfaction of a goal is

the proportion between

• the number of possible behaviors satisfying the goal’s

antecedent C and consequent HT and

• the number of possible behaviors satisfying the condi-

tion C.

A goal is thus fully satisfied if its probability of satis-

faction is equal to 1.

Consider the goal Achieve [AmbulanceMobilized-

WhenAllocated] in Fig. 1. Its probability of satisfaction is

defined as:

Nr: of behaviors where allocated ambulance is mobilized

Nr: of behaviors where ambulance is allocated

Assuming there are 3 possible behaviors where an

allocated ambulance is mobilized out of 4 possible

behaviors where the ambulance is allocated, the

probability of satisfaction for that goal is 0.75.

The set of behaviors satisfying the goal Achieve

[AmbulanceMobilizedWhenAllocated] does not necessarily

satisfy or deny the goal Achieve [AmbulanceAllocated-

WhenIncidentReported] in Fig. 1; whether an allocated

ambulance is mobilized or not does not depend on whether

an ambulance is allocated or not. On the other hand, the

goals Achieve [AmbulanceMobilizedWhenAllocated] and

Achieve [Allocated AmbulanceMobilizedWhenOnRoad] are

not independent; every behavior satisfying the latter also

satisfies the former. Goal dependence is defined more

precisely as follows.

Definition 2 Two goals are dependent if the set of

behaviors that non-vacuously satisfies one of them non-

vacuously satisfies or denies the other. Two goals are

independent if they are not dependent.

In terms of conditional probabilities, the independence

of goals G1 and G2 is characterized by the following

conditions:

PðG1jG2Þ ¼ PðG1j:G2Þ ¼ PðG1Þ;
PðG2jG1Þ ¼ PðG2j:G1Þ ¼ PðG2Þ;

where P(G) denotes the probability of satisfaction of G and

P(G|H) denotes the probability of satisfaction of G over all

behaviors satisfying property H.

The AND/OR-refinement structure in a correct goal

model can be exploited to syntactically determine whether

two goals are independent.Fig. 2 Partial obstacle model for ambulance dispatching system
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Proposition 1 In a goal graph whose AND-refinements

are complete, two goals are dependent if they are con-

nected through a refinement path or a conflict link.

Proof (a) In a complete refinement, any behavior satisfying

a child goal is a behavior satisfying the parent goal (see the

entailment relation for complete refinements in Sect. 2.1).

The independence of the parent and child goals would, by

definition, require at least one behavior satisfying the child

goal to not satisfy the parent goal, which contradicts the

completeness assumption. In view of the transitivity of

entailments, the argument can be recursively applied to

ancestor goals. (b) If a goal G1 conflicts with a goal G2, we can

find a boundary condition B such that {G1, B, Dom}� : G2

(see the conflict relation in Sect. 2.1). The set of behaviors

satisfying G1 under such circumstances necessarily denies

G2, and the goals are by definition dependent.

Proposition 2 In a minimal, complete and consistent

goal refinement, the subgoals are independent.

Proof Assume a minimal, complete, and consistent

refinement of goal G into two dependent subgoals G1, G2,

with the set of behaviors satisfying G1 (say) satisfying or

denying G2. If these behaviors satisfy G2, we have: {G1,

Dom} � G2. As the refinement is complete, we have: {G1,

G2, Dom} � G which reduces to {G2, Dom} � G; the

refinement is thus not minimal which contradicts our

assumption. If those behaviors deny G2, a similar argument

leads us to conclude that the refinement is not consistent as

no behavior can be found that satisfies both subgoals. The

extension to n subgoals is straightforward.

In our probabilistic framework, goals are annotated with

an estimated probability of satisfaction and a required

degree of satisfaction.

Definition 3 The estimated probability of satisfaction

(EPS) of a goal is the probability of satisfaction of this goal

in view of its possible obstructions. It is computed from the

goal/obstacle models.

In our running example, an allocated ambulance might not

be mobilized for various reasons, e.g., the ambulance crew is

unresponsive, the ambulance is not ready for its next mission,

communication failure, etc. Due to such obstacles, there is a

probability of this goal not being satisfied.

The EPS of a goal G is denoted by P(G). The EPS of

goals G1 and G2 in combination is denoted by P(G1, G2).

Definition 4 The required degree of satisfaction (RDS)

of a goal is the minimal probability of satisfaction admis-

sible for this goal. It is imposed by elicited requirements,

existing regulations, standards, and the like.

For example, ORCON standards require ambulances to

be on the incident scene within 14 min in 95 % of cases

[22]. This is captured by annotating the goal Achieve

[AmbulanceOnSceneInTimeWhenIncident Reported] with a

RDS of 0.95.

Note that the previous situation of (non-probabilistic)

goals recalled in Sect. 2.1 is generalized here; for such

goals, we have: RDS(G) = 1.

Annotating a behavioral goal C ) HT in a goal model with

its RDS amounts to specifying it in a probabilistic temporal

logic such as PCTL [16] through an assertion taking the form:

C ) Pr �RDS ½HT �

where PrCRDS is the probabilistic operator expressing that the

probability of paths satisfying HT is at least equal to RDS.

Definition 5 A goal G is probabilistic if

0 \ RDS (G) \ 1.

Given the EPS and RDS of a goal, we can measure the

gap between these estimated and prescribed probabilities.

If EPS C RDS, the goal’s required satisfaction threshold is

reached; if EPS \ RDS, it is not and this gap should be as

low as possible. The difference allows us to measure how

severe the goal violation is.

Definition 6 The severity of violation (SV) of a goal G is

defined by:

SVðGÞ ¼ RDSðGÞ � PðGÞ:

The domain-consistency condition introduced in Sect.

2.1. is generalized accordingly; it now states that there is a

chance to observe one behavior at least that satisfies the

goal and the domain properties:

PðGjDom) [ 0 ðdomain-consistencyÞ

In our generalized setting for goals with a partial degree of

satisfaction, we need to state what desirable goal refinements

are. The completeness, consistency, and minimality

conditions in Sect. 2.1 are therefore generalized accordingly.

A refinement of goal G into subgoals SG1,…, SGn is

now said to be complete if:

PðGjSG1; . . .; SGn;DomÞ[ 0 ðcomplete refinementÞ

Note that this condition is weaker than the completeness

condition in Sect. 2.1 as it accounts for partial satisfaction;

it covers in particular the case of full satisfaction,

equivalent to the completeness condition in Sect. 2.1:

PðGjSG1; . . .; SGn;DomÞ ¼ 1

The refinement is consistent if:

PðSG1; . . .; SGnjDomÞ[ 0 ðconsistent refinementÞ

The refinement is minimal if:

PðGj ^j 6¼i SGj; DomÞ\PðGj ^j SGj;DomÞ
for all i ð1� i� nÞ ðminimal refinementÞ
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3.2 Probabilistic obstacles

A goal can be partially satisfied because of obstacles to it.

Consider the goal Achieve [AmbulanceMobilized-

WhenAllocated] in Fig. 1. Its precise specification is:

AmbulanceAllocated ) }� 2min AmbulanceMobilized

There is a domain property stating that a necessary

condition for ambulances to be mobilized is that their

ambulance crew must be responsive:

AmbulanceMobilized ) CrewResponsive

By regression [19] of the goal negation through this

domain property, we obtain the obstacle

AmbulanceCrewNotResponsive:

}ðAmbulanceAllocated ^h� 2min:CrewResponsiveÞ

This condition captures the situation of an ambulance

being sooner-or-later allocated without subsequent crew

response for 2 min. It is called obstacle condition. Such

conditions should hopefully not be satisfied too often.

Definition 7 The probability of an obstacle is the prob-

ability of satisfaction of its obstacle condition, that is, the

proportion between

• the number of possible behaviors satisfying the obstacle

condition and

• the number of possible system behaviors.

The probability of an obstacle O is denoted by P(O).

The probability of O over all behaviors satisfying some

property H is denoted by P(O|H).

The obstruction and domain-consistency conditions

recalled in Sect. 2.2 must be generalized in this probabi-

listic setting.

The obstruction condition now states that there is a

chance for the obstacle to violate the goal:

Pð:GjO;DomÞ[ 0 ðobstructionÞ

Note again that this condition is weaker than the

obstruction condition in Sect. 2.2 as it accounts for partial

obstruction; it covers in particular the case of full

obstruction, equivalent to the obstruction condition in

Sect. 2.2:

Pð:GjO;DomÞ ¼ 1

The domain-consistency condition states that there is a

chance for the obstacle to occur:

PðOjDomÞ[ 0 ðdomain consistencyÞ

In our generalized setting, we need to characterize what

obstacle refinements are. The conditions on obstacle

refinement introduced in Sect. 2.2 are therefore generalized

accordingly.

For an AND-refinement, the completeness, consistency,

and minimality conditions are similar to those introduced in

Sect. 3.1 for probabilistic goals.

For an OR-refinement, the counterpart of the entailment

condition in Sect. 2.2 now states that if one of the sub-

obstacles occurs then the parent obstacle may occur:

PðOjSOiÞ[ 0 for all SOi ðentailmentÞ

This condition is again weaker than the entailment

condition in Sect. 2.2; it covers the particular case of full

satisfaction, equivalent to the entailment condition in Sect. 2.2:

PðOjSOiÞ ¼ 1

For example, for the top OR-refinement in Fig. 2, we do

not have:

PðMobilizedAmbulanceNotOnSceneInTimejAmbulanceLostÞ ¼ 1;

as a lost mobilized ambulance might not be on the incident

scene within 11 min, but this is not always necessarily the

case.

The generalized condition for an OR-refinement to be

domain-complete now states that the parent obstacle cannot

be satisfied through further sub-obstacles:

PðOj:SO1; . . .;:SOn;DomÞ ¼ 0 ðdomain completenessÞ

In our running example, our domain knowledge might

allow us to state that ‘if a mobilized ambulance is not stuck

in traffic jam or lost or broken down, then it will reach the

incident scene within 11 min.’ We would then have:

PðMobilizedAmbulanceNotOnScenej:StuckInTrafficJam;

:AmbulanceLost;:AmbulanceBrokenDownÞ ¼ 0

The disjointness condition on sub-obstacles in Sect. 2.2

is generalized into an independence condition:

PðSOijSOjÞ ¼ PðSOij:SOjÞ ¼ PðSOiÞ for all SOi 6¼ SOj

PðSOjjSOiÞ ¼ PðSOjj:SOiÞ ¼ PðSOjÞ for all SOj 6¼ SOi

In our example, the probability of an ambulance being

broken down does not depend on, e.g., the probability of

the ambulance being lost or stuck in a traffic jam.

Note that two dependent obstacles can be captured through

three independent obstacles: one where the first obstacle

condition holds but not the second, one where the second

obstacle condition holds but not the first, and one where both

hold. Each of these can have a different probability.

4 Evaluating obstacles and their consequences

This section shows how obstacle probabilities are com-

puted from the obstacle refinement model and how the
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probabilities of their consequences are computed from the

goal refinement model.

The estimated probabilities of leaf obstacles are to be

obtained first. Such estimates are up-propagated in obstacle

refinement trees (Sect. 4.1); the results are propagated from

root obstacles to leaf goals in the goal model (Sect. 4.2);

the results are in turn up-propagated in the goal model to

obtain probabilities of the obstacle consequences in terms

of goal obstructions at various levels of abstraction

(Sect. 4.3.).

4.1 From leaf obstacles to root obstacles

We first need to rely on domain knowledge to obtain

estimated probabilities of leaf obstacles in refinement

trees—typically, through statistical data about past system

behaviors (cf. Definition 7). For the leaf obstacle

}ðAmbulanceMobilized ^h:AmbulanceInFamiliarAreaÞ

in Fig. 2, such data might reveal that the situation of

mobilized ambulances being in unfamiliar areas occurs in

20 % of the cases. For the leaf obstacle

}ðAmbulanceMobilized ^h:GPSWorkingÞ

we might get from statistical data that the situation of the

GPS device not working inside mobilized ambulances

occurs in 10 % of the cases. Such estimates are to be up-

propagated in obstacle trees.

In an AND-refinement, a parent obstacle may occur if all

its sub-obstacles occur. The probability of the parent

obstacle is therefore the probability that each sub-obstacle

occurs and their combined occurrence leads to the satis-

faction of the parent obstacle:

PðOÞ ¼ PðSO1Þ � PðSO2Þ � � � � � PðOjSO1; SO2; . . .Þ

Back to our example, we thus also need to know from

statistical data how often an ambulance in unfamiliar area

with non-working GPS gets lost—e.g., in 95 % of the

cases.

In an OR-refinement, a parent obstacle may occur if

any of the sub-obstacles occurs. The probability of the

parent obstacle is therefore the probability that any of the

child obstacle occurs and leads to the satisfaction of

the parent obstacle. In this case, we cannot simply sum

the probabilities of each sub-obstacle occurring and

leading to the satisfaction of the parent obstacle; we

would then need to remove the probability of different

sub-obstacles occurring in combination. To overcome this

problem, we consider the probability of the parent

obstacle not occurring, which equals the probability of no

child obstacle occurring that would lead to the satisfaction

of the parent obstacle. For a complete and disjoint

refinement, this leads to:

PðOÞ ¼ 1� 1� PðSO1Þ � PðOjSO1Þð Þ
� 1� PðSO2Þ � PðOjSO2Þð Þ � . . .

The preceding formulas for AND- and OR-refinements

are recursively applied bottom-up through the obstacle

refinement tree until the probability of the root obstacle is

obtained.

Consider our obstacle model in Fig. 2 with the above

statistical data about leaf obstacles, namely 20 % of

mobilized ambulances are sent to unfamiliar areas, 10 % of

GPS inside mobilized ambulances are not working, and

95 % of mobilized ambulances in unfamiliar areas with

non-working GPS get lost. The propagation rule for AND-

refinements yields the following probability for the parent

obstacle AmbulanceLost:

PðAmbulanceLostÞ ¼ ð0:2� 0:1Þ � 0:95 ¼ 0:019

Assume now that statistical data tell us that 2 % of

mobilized ambulances get stuck in traffic jam, 0.5 % of

mobilized ambulances break down, and the proportion of

lost, stuck or broken ambulances not reaching the incident

scene within 11 min is 99, 98, and 100 %, respectively.

The propagation rule for OR-refinements yields the

following probability for the root obstacle Mobilized

AmbulanceNotOnSceneInTime:

PðMobilizedAmbulanceNotOnSceneInTimeÞ
¼ 1� ð1� 0:019� 0:99Þ � ð1� 0:02� 0:98Þ
� ð1� 0:005� 1Þ ¼ 0:0429;

which means that a mobilized ambulance will not arrive on

the incident scene within 11 min in 4.29 % of cases.

4.2 From root obstacles to obstructed leaf goals

In standard risk analysis, a risk consequence is expressed in

terms of degree of loss of satisfaction of the associated

objective. This is translated in our framework by saying

that the consequence of an obstacle is the lower degree of

satisfaction of the obstructed leaf goal and, recursively, of

its parent and ancestor goals.

The probability of non-satisfaction of the leaf goal LG is

given by the probability that the root obstacle RO occurs

and that such occurrence actually leads to the non-satis-

faction of the leaf goal (see the obstruction condition in

Sect. 3.2):

1� PðLGÞ ¼ PðROÞ � Pð:LGjROÞ

Back to our running example, we can thereby compute

the reduced probability of satisfaction for the leaf goal
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Achieve [AmbulanceOnSceneWhenMobilized] in Fig. 1. As

the obstacle MobilizedAmbulanceNotOnSceneInTime always

obstructs the goal, we obtain:

P Achieve AmbulanceOnSceneWhenMobilized½ �ð Þ
¼ 1� 0:0428� 1 ¼ 0:957:

This means that in more than 95 % of cases, a mobilized

ambulance will arrive on the incident scene within the

prescribed 11 min.

If the leaf goal can be obstructed by more than one

obstacle, it is satisfied when none of these occurs:

PðLGÞ ¼ 1� PðO1Þ � Pð:LGjO1Þð Þ � ð1� PðO2Þ
� Pð:LGjO2Þ � . . .

4.3 From obstructed leaf goals to higher-level goals

The decreased degree of satisfaction of the obstructed leaf goal

must be up-propagated in the goal refinement graph in order to

determine all obstacle consequences. The probability of satis-

faction of a parent goal depends on the probabilities of its

subgoals. (The presentation hereafter considers refinements

consisting of two subgoals only, without any loss of generality.)

As introduced in Sect. 3.1, in the most general case, the

parent goal is satisfied if the two subgoals are satisfied, or

the satisfaction of the first is sufficient for satisfying the

parent, or the satisfaction of the second is sufficient for

satisfying the parent. This leads to the following general

propagation rule for AND-refinements:

PðGÞ ¼ PðSG1; SG2Þ � PðGjSG1; SG2Þ
þ PðSG1;:SG2Þ � PðGjSG1;:SG2Þ
þ PðSG2;:SG1Þ � PðGjSG2;:SG1Þ
þ Pð:SG1;:SG2Þ � PðGj:SG1;:SG2Þ

In case we focus our attention on a single system, no

alternative OR-refinements are to be considered; the

probability of satisfying G given that none of the subgoals

is satisfied is then equal to zero and the last term disappears.

Moreover, in case the refinement meets the non-probabilistic

completeness condition in Sect. 2.1, we have that P(G|SG1,

SG2) = 1. The AND-propagation rule then reduces to:

PðGÞ ¼ PðSG1; SG2Þ
þ PðSG1;:SG2Þ � PðGjSG1;:SG2Þ
þ PðSG2;:SG1Þ � PðGjSG2;:SG1Þ ðand-propagÞ

Depending on the type of refinement and goal, this

propagation rule can be made further specific. Table 1

gives propagation rules for a sample of common refinement

patterns known to be complete, consistent, and minimal

[10]; the subgoals there are therefore independent (see

Proposition 2 in Sect. 3.1).

For a milestone-driven refinement, for example, the

satisfaction of a single milestone-based subgoal is not

sufficient for satisfying the parent goal. The propagation

rule therefore reduces to:

PðGÞ ¼ PðSG1Þ � PðSG2Þ

For a case-driven refinement, the parent goal is satisfied

when one of the subgoals is satisfied. If P(CS) denotes the

probability of satisfying the case condition CS, assuming

two disjoint cases, the propagation rule becomes:

PðGÞ ¼ PðCSÞ � PðSG1Þ þ 1� PðCSÞð Þ � PðSG2Þ

The specific simplification of the (and-propag) rule thus

depends on the goal refinement pattern/tactic used; this

information is available in the annotation of the refinement

node [21].

To evaluate obstacles consequences, we may proceed in

two ways:

• Global impact analysis: the computed probabilities for all

obstructed leaf goals are together propagated bottom-up

in the goal graph to see how much the resulting EPS of

higher-level goals deviates from their required RDS.

Table 1 Propagation rules for common goal refinement patterns

Refinement pattern Propagation equation

Milestone-driven

P(G) = P(SG1) 9 P(SG2)

Case-driven

P(G) = P(CS) 9 P(SG1) ?

(1–P(CS) 9 P(SG2)

Guard introduction

P(G) = P(SG1) 9 P(SG2) 9 P(SG3)

Divide-and-conquer

P(G) = P(SG1) 9 P(SG2)

Unmonitoribility-driven

P(G) = P(SG1) 9 P(SG2)

Uncontrollability-driven

P(G) = P(SG1) 9 P(SG2)
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• Local impact analysis: the consequence of a single leaf

goal obstruction is evaluated by up-propagation of the

computed probability for this leaf goal, all other leaf

goals being assigned a probability of 1 (meaning that

they are all assumed to be fully satisfied).

Let us illustrate the global impact analysis on the model in

Fig. 1. We want to know whether this model satisfies the

threshold imposed by the ORCON standard. The latter requires

the goal Achieve [AmbulanceOnSceneInTimeWhenIncident-

Reported] to be satisfied in at least 95 % of cases.

For the leaf goal Achieve [AmbulanceOnSceneWhen-

Mobilized], the probability of satisfaction computed in

Sect. 4.2 is 0.956. Similar computations for the other leaf

goals in Fig. 1 yield:

Achieve AmbulanceAllocatedWhenIncidentReported½ � 0:98;

Achieve AllocatedAmbulanceMobilizedWhenOnRoad½ � 0:98;

Achieve MobilizedByFaxWhenAllocatedAtStation½ � 0:90;

Achieve MobilizedByPhoneWhenAllocatedAtStation½ � 0:95:

The probability for the parent goal Achieve [Allocated

AmbulanceMobilizedWhenAtStation] is obtained by using

the general and-propag rule as the refinement does not fit

any pattern. In this rule, we have here P(G|:SGi, SGj) = 1;

for example, Achieve [AllocatedAmbulanceMobilizedWhen

AtStation] is satisfied given that Achieve [MobilizedBy

FaxWhenAllocatedAtStation] is satisfied. The simplified

rule then yields:

PðAchieve ½AllocatedAmbulanceMobilizedWhenAtStation�Þ
¼ 0:9� 0:95þ 0:10� 0:95þ 0:05� 0:9 ¼ 0:995

We can now compute the probability of satisfying the

goal Achieve [AmbulanceMobilizedWhenAllocated]. Its

refinement in Fig. 1 is a case-driven refinement; the

corresponding simplified propagation rule can therefore

be used. The case condition CS is Allocated

AmbulanceAtStation. Statistical data tell us that this

condition holds in 60 % of cases. We therefore obtain:

PðAchieve ½AmbulanceMobilizedWhenAllocated�Þ
¼ 0:60� 0:995þ 0:40� 0:98 ¼ 0:984

We can then continue the up-propagation and compute

the probability of satisfying the goal Achieve [Ambulance

OnSceneWhenAllocated] in Fig. 1. Its refinement is a

milestone-driven one; the associated propagation rule is

therefore used. This leads to:

PðAchieve ½AmbulanceOnSceneWhenAllocated�Þ
¼ 0:984� 0:957 ¼ 0:947

Finally, we reach the top goal in Fig. 1. Its refinement is a

milestone-driven one as well. The same propagation rule yields:

PðAchieve½AmbulanceOnSceneInTimeWhenIncidentReported�Þ
¼ 0:98� 0:947 ¼ 0:928

The resulting EPS for this goal is 92.8 %; the system as

modelled is thus not able to satisfy the ORCON standard

prescribing 95 %. The next section discusses how the

critical obstacles can be identified for higher priority

resolution in a new version of the model.

5 Identifying critical obstacle combinations

Countermeasures should be deployed at requirements

engineering time or at system runtime in order to resolve

probabilistic goal violations. Such countermeasures can be

explored according to risk-reduction tactics [19, 21]. To

select the most appropriate ones at modeling time or at

runtime, we should identify the most problematic leaf

obstacles. These are the ones involved in critical

combinations.

An obstacle combination is said to be critical with

respect to a goal G if it results in SV(G) [ 0, where

SV(G) = RDS(G) - P(G). It is critical with respect to a set

of goals if it is critical with respect to each of them.

The problem of determining critical combinations can

be seen as a multi-criteria optimization problem; we are

looking for minimal sets of leaf obstacles that maximize

the violation severity of high-priority goals.

A brute-force approach for generating critical combi-

nations consists of generating all possible leaf obstacle

combinations. The violation severity SV(G) is then com-

puted for each high-priority goal G considered. If these

goals have different priorities, their computed SV(G) can be

weighted differently according to their respective priority.

The most critical combinations are identified by sorting the

leaf obstacle combinations by decreasing, possibly

weighted SV(G)’s.

Table 2 Violation severity for Achieve [AmbulanceOnSceneInTime
WhenIncidentReported]

Ambulance

lost

Ambulance

stuck in traffic

Ambulance

broken down

EPS

(%)

RDS SV

(%)

1 1 1 92.77 2.23

1 1 0 93.20 1.80

0 1 1 94.54 0.46

1 0 1 94.61 0.39

0 1 0 95.02 95 % -0.02

1 0 0 95.10 -0.10

0 0 1 96.44 -1.44

0 0 0 96.92 -1.92
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Consider the obstacles in Fig. 2. There are 4 leaf

obstacles and 8 possible combinations (as two leaf obsta-

cles are involved in an AND-refinement). Table 2 shows

the computed SV(G) of all these combinations, taking G as

the root goal from Fig. 1. The values 1 or 0 indicate that

the corresponding obstacle is or is not in the combination,

respectively. (The two leaf obstacles at the bottom of Fig. 2

are aggregated in Table 2 into their parent obstacle Am-

bulanceLost for lack of space). As we can see bold in Table

2, there are 4 critical obstacle combinations with respect to

the root goal.

Figure 3 visualizes those SV(rootGoal) computed for

different combinations. The squares represent leaf obstacle

combinations that differ in size along the x-axis. Those above

the 0 % threshold, indicated by the dotted line, are critical.

The black triangles indicate the most critical combinations

for a given size. As we can see in bold in Table 2, two com-

bined leaf obstacles are sufficient for falling under the RDS of

the root goal; a single obstacle cannot obstruct this goal

enough. From Table 2, we can make the following further

observations about critical pairs.

• The possibility of an ambulance being lost or stuck in

traffic jam is sufficient for severe obstruction of the

goal; this is the pair to resolve first.

• The two other pairs cause a significantly smaller loss in

satisfaction of our top-level goal.

Nr: of COOL behaviors satisfying

ðRequestEncoded^ } AtDestinationÞ
Nr: of behaviors satisfying RequestEncoded

� 95 %:

The set of black triangles in Fig. 3 defines a Pareto front.

Efficient algorithms for generating Pareto fronts are available

[8, 18]. Our generation of leaf obstacle combinations and

their ranking by severity can thereby be optimized in order to

scale up for larger systems. This optimization is not applied

in the next section as it is subjected to future work.

6 Validation

The techniques in this paper were used for risk analysis of a

CarpOOLing support system (COOL) [9]. A brief pre-

liminary description follows.

The system should act as a marketplace for drivers to

offer empty seats in real time and travellers to use

them under agreed conditions. A driver is matched in

real time with anyone searching for a ride along a

common route. Effective carpooling may critically

depend on marketplace size. The system should

therefore be attractive to drivers, in particular by not

overconstraining them. Drivers are assumed to have a

GPS-based navigation device and a PDA/iPhone-like

touch screen.

Our goal model for the COOL carpooling system includes

39 goals and 18 refinements up to 7 levels. A variety of

refinements patterns were used [21]. The obstacle model

includes 98 obstacles, among which 63 are leaf obstacles.

This section reports on our risk analysis for the COOL

system. Section 6.1 summarizes our elaboration of the goal

and obstacle models. Section 6.2 discusses our probability

estimations for the leaf obstacles in the COOL obstacle

model. Section 6.3 presents our global impact analysis of

the COOL obstacles, whereas Sect. 6.4 illustrates our local

impact analysis on selected obstacles. Section 6.5 provides

some concluding remarks from our experience.

6.1 Modeling COOL goals and obstacles

We started with the goal Achieve [RideRequestServed]

corresponding to the passenger needs we wanted to focus

on. For the carpooling system to fulfill its mission, we

expect 95 % of encoded ride requests to be served, that is,

Hence, the following specification draft (with time

constraints being ignored for simplicity):

Goal Achieve[RideRequestServed]
Def For every encoded request for a ride, the passenger shall arrive at

her destination.
RDS 95%

FormalSpec RequestEncoded ◊⇒ AtDestination

Using the milestone-driven pattern, this high-level goal is

refined in two subgoals: Achieve [RidePlannedWhenRequest

Encoded] and Achieve [PassengerAtDestinationWhenRide

Planned]. Each of these is refined toward assignable

Fig. 3 Ranking of obstacle combinations by violation severity
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requirements or assumptions. Figures 4 and 5 show refine-

ments for these two goals.

When applicable, customized propagation rules were

derived from the general and-propag rule in Sect. 4.3 to

simplify it. The corresponding refinement was then anno-

tated with the simplified rule.

For example, consider the following goal:

Goal Achieve [OkRidesSelectedFromProposedList]
Def A set of convenient possible rides shall be selected from the list

proposed by the software

FormalSpec RideListProposed ◊ ⇒ OkRidesSelectedFromList

This goal was refined in the three following leaf goals:

Goal Achieve [OkRidesSelectedByDriver]
Def A set of convenient possible rides shall be selected by the driver from 

the list proposed by the software

FormalSpec RideListProposed ◊ ⇒ OkRidesSelectedByDriver

Goal Achieve [OkRidesSelectedByPassenger]
Def A set of convenient possible rides shall be selected by the passenger 

from the list proposed by the software

FormalSpec RideListProposed ◊ ⇒ OkRidesSelectedByPassenger

Goal Maintain [OkRidesRemainSelected]
Def A selected set of convenient possible rides remains selected
FormalSpec 

OkRidesSelectedByPassenger ⇒ OkRidesSelectedByPassenger
OkRidesSelectedByDriver ⇒∧ OkRidesSelectedByDriver

This refinement did not match available refinement

patterns. In this specific case, there is no way the parent

goal can be satisfied with one or more subgoals not being

satisfied. In addition, the subgoals are independent. The

following simplified rule can therefore be applied:

PðGÞ ¼ PðSG1Þ � PðSG2Þ � PðSG3Þ

Root obstacles were generated by negating

corresponding leaf goals. For example, consider the

following leaf goal:

Goal Achieve [RideListProposed]
Def For any accurately encoded ride request and ride offer, a list of

possible rides shall be proposed by the software

FormalSpec RequestEncoded RideReqAccurate RideOfferAccurate
◊ ⇒

∧ ∧
RideListProposed

This leaf goal is obstructed by the following root

obstacle:

Obstacle NoRideListProposed
Def For some accurately encoded ride request and ride offer, no list of

possible rides is ever proposed by the software
FormalSpec

◊ (RequestEncoded RideReqAccurate RideOfferAccurate
¬ RideListProposed )

∧ ∧
∧

All root obstacles were then refined using available tech-

niques [20]. Figure 6 shows a refinement tree thereby obtained.

6.2 Estimating leaf obstacles to the COOL system

The 63 leaf obstacles were then annotated with estimates of

their probability of occurrence. As they are grounded on

the domain, such estimates can be elicited from user

experience, statistical data, or runtime measures from

existing software applications. As the system provides

specific features for ride evaluation by the riders, the

evaluation questionnaire might be designed for non-

Fig. 4 Goal refinements for Achieve [PassengerAtDestinationWhenRidePlanned]

140 Requirements Eng (2013) 18:129–146

123



www.manaraa.com

positive evaluations to reflect the obstacle model so as to

acquire relevant data.

Table 3 provides leaf obstacle estimates based on personal

carpooling experience by colleagues and us. These estimates

should be refined from statistical data when available.

For example, 15 possible behaviors were estimated to

satisfy the following obstacle condition out of 1,000 pos-

sible behaviors:

Obstacle RideOfferCancelledWhenInstructionsSent
Def The Instructions are known by the driver and the passenger and the

driver cancels her ride offer
FormalSpec

◊
∧

(InstructionsKnownByPassenger InstructionsKnownByDriver
RideOfferCancelled)

∧

6.3 Global impact analysis for the COOL obstacles

A global analysis was first performed to measure the impact

of all obstacles on the system being modeled. The various

probabilities were up-propagated from leaf obstacles to root

goal using the propagation equations from Sect. 4.

For example, consider the obstacle model fragment

depicted in Fig. 6 with probability estimates for the leaf

obstacles given in Table 3. We may propagate probabilities

according to the rules in Sect. 4.1 to compute the proba-

bility of the parent obstacle DriverAtOtherDropPoint:

PðDriverAtOtherDropPointÞ ¼ 1� ð1� 0:01Þ
� ð1� 0:005Þ ¼ 0:015

We may then compute the probabilities for the parent

obstacles DropPointNeverReached and DropPointNot

ReachedInTime:

PðDropPointNeverReachedÞ ¼ 1� ð1� 0:06Þ � ð1� 0:005Þ
� ð1� 0:001Þ � ð1� 0:015Þ
� ð1� 0:001Þ ¼ 0:08

PðDropPointNeverReachedInTimeÞ ¼ 1� ð1��0:001Þ
� ð1� 0:1Þ � ð1� 0:015Þ
� ð1� 0:005Þ ¼ 0:12

The latter two probabilities are propagated to the parent

obstacle:

PðDropPointNotReachedWhenPassengerInCarÞ ¼ 1� ð1� 0:08Þ
� ð1� 0:12Þ
¼ 0:19Fig. 6 Obstacle tree against Achieve [DropPointFromInstructions

ReachedWhenPassengerInCar]

Fig. 5 Goal refinements for Achieve [RidePlannedWhenEncoded]

Requirements Eng (2013) 18:129–146 141

123



www.manaraa.com

This probability may then be propagated to the

corresponding obstructed leaf goal using the rule in Sect.

4.2:

PðAchieve ½DropPointFromInstructionsReached

WhenPassengerInCar�Þ ¼ 1� 0:19 ¼ 0:81

The result may now be propagated from the leaf goal to the

root goal using the propagation rules presented in Sect. 4.3.

For the refinement of the goal Achieve [DropPoint

ReachedWhenPassengerInCar], we use the propagation

rule for unmonitorability-driven refinements:

PðAchieve ½DropPointReachedWhenPassengerInCar�Þ
¼ 1� 0:81 ¼ 0:81

No obstacle was identified in our model for the goal

Maintain [InstructionsKnownWhenPassengerInCar]. We

can thus propagate one level up using the propagation rule

for milestone refinements:

PðAchieve ½PassengerAtDestinationWhenInCar�Þ
¼ 1� 0:81 ¼ 0:81

No obstacle was identified against Achieve

[PassengerAtDestinationWhenDropPointReached]. Using

the rule for milestone-driven refinements, we continue

the up-propagation:

PðAchieve ½PassengerAtDestinationWhenInstructionsKnown�Þ
¼ 0:65� 0:81 ¼ 0:526

PðAchieve½PassengerAtDestinationWhenRidePlanned�Þ
¼ 0:808� 0:526 ¼ 0:425

The probabilities for the goals Achieve [PassengerIn

DriverCarWhenInstructionsKnown] and Achieve [Ride

InstructionsKnownByRidersWhenRidePlanned] were

Table 3 Estimated probabilities for leaf obstacles

Leaf obstacle Proba (%) Leaf obstacle Proba (%)

Fake ride offer 0.1 Instructions in wrong language 0.5

Ride offer outdated 1 Printing failed 1

Departure date or time confused 2 Ride request cancelled when instructions sent 1.5

Arrival date or time confused 2 Ride offer cancelled when instructions sent 1.5

Departure point confused 3 Instructions not read by passenger 0.5

Arrival point confused 1.5 Instructions not read by driver 0.5

Fake ride request 0.1 Too many luggage 0.5

Ride request outdated 1 Too many riders 0.5

No request matching for that time 2 Not enough seats 0.5

No request matching for that position 1 Riders do not recognize 1

No offer matching for that time 2 Location imprecise 2

No offer matching for that position 1 Ride request cancelled 3

Ride request cancelled and RideList proposed 2 Ride offer cancelled 2

No RideList convenient 1 Passenger late at pickup point 6

Ride offer cancelled and RideList proposed 2 Passenger forgot 1

Ride request cancelled and pair elected 1 Passenger got lost 2

Ride offer cancelled and pair elected 1 Instructions received too late 2

No pickup point found near departure point 0.5 Pickup point not accessible to passenger 0.5

Detour too important for reaching pickup point 1 Driver late at pickup point 2

No pickup point accessible to passenger 0.5 Driver forgot 2

No pickup point accessible to driver 0.5 Driver got lost 6

No drop point found near arrival point 1 Pickup point not accessible to driver 0.5

Detour too important for reaching drop point 0.5 Pickup point confused 1

No drop point accessible to passenger 0.5 Unclear instructions 0.5

No drop point accessible to driver 0.5 Other passenger late 0.5

Pickup time incompatible with road and other point 0.5 Detour on planned road 1.5

Pickup time incompatible with other pickups or drops 0.5 Stuck in traffic jam 10

Journey longer than expected 0.5 Wrong instructions sent 0.1

Drop time incompatible with road and other point 0.5 Car broken down 0.5

Drop time incompatible with other pickups or drops 0.5 Drop point inaccessible 0.1

Wrong contact information 7 Drop point confused 1

Communication failed 3
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similarly obtained by probability propagation from their

leaf obstacles. The estimated probability of satisfaction for

the root goal Achieve [RideRequestServed] is then finally

obtained:

PðAchieve ½RideRequestServed�Þ ¼ 0:425� 0:66 ¼ 0:28

This means that the probability of serving a ride request

is only about 28 % if all leaf obstacles were correctly

estimated. Using the ideal model where requirements on

countermeasures to likely problems are missing, there is

approximately 1 chance out of 3 to serve a ride request.

This is far from the RDS of 95 % prescribed on this main

goal.

We thus need to carefully resolve critical obstacles. Due

to the large number of leaf obstacles (63), we need to

prioritize them, so that we may focus our resolutions on the

most critical obstacles.

6.4 Local impact analysis of single COOL obstacles

To complement our global analysis, we may therefore

consider one single leaf obstacle at a time, setting the

probabilies of all other leaf obstacles to 0. By similar up-

propagation of these probabilities, we obtain the violation

severity for the root goal. Among the 63 single leaf

obstacles, only six revealed to cause severe violation, as

Table 4 depicts.

As seen in Table 4, the leaf obstacle DriverGotLosts,

with estimated probability of 6 %, causes a violation

severity of 6.6 % for the root goal; this means that only

88.4 % of requested rides would then be served. The leaf

obstacle StuckInTrafficJam, with estimated probability of

10 %, causes a violation severity of 5 % for the root goal.

The leaf obstacle WrongContactInformation, with esti-

mated probability of 7 %, yields a violation severity of

2 % with respect to the root goal’s prescribed RDS of

95 %.

Ranking leaf obstacles by their probability of satisfac-

tion is thus not the same as ranking them by the resulting

violation severity for the root goal; the obstacle Driver-

GotLost has a lower probability compared with

StuckInTrafficJam but causes a more severe violation of the

root goal.

After having found the single leaf obstacles that are

critical, we need to turn our attention to critical pairs (as

defined in Sect. 5). Assuming those critical singletons are

selected for resolution, the critical pairs should not

redundantly include them. Using the brute-force approach

discussed in Sect. 5, we found 470 pairs of leaf obstacles

that are critical with respect to the root goal, out of the

1953 generated pairs. Among those 470 pairs, 63 do not

include any of the critical singletons in Table 4. The 20

Table 5 Critical obstacle pairs

Leaf obstacle 1 Leaf obstacle 2 SV for root

goal (%)

Arrival date or time

confused

Instructions received too

late

2.8

Departure date or time

confused

Instructions received too

late

2.8

Departure date or time

confused

Arrival date or time

confused

2.8

Communication failed Instructions received too

late

1.8

Arrival date or time

confused

Communication failed 1.8

Departure date or time

confused

Communication failed 1.8

Arrival date or time

confused

Arrival point confused 1.8

Departure date or time

confused

Arrival point confused 1.8

Ride offer cancelled when

instructions sent

Instructions received too

late

1.8

Ride request cancelled

when instructions sent

Instructions received too

late

1.8

Arrival point confused Instructions received too

late

1.8

Arrival date or time

confused

Ride offer cancelled when

instructions sent

1.8

Arrival date or time

confused

Ride request cancelled

when instructions sent

1.8

Departure date or time

confused

Ride offer cancelled when

instructions sent

1.8

Departure date or time

confused

Ride request cancelled

when instructions sent

1.8

Communication failed Ride offer cancelled when

instructions sent

0.9

Communication failed Ride request cancelled

when instructions sent

0.9

Arrival point confused Communication failed 0.9

Instructions received too

late

Driver forgot 0.9

Instructions received too

late

Driver late at pickup point 0.9

Table 4 Critical obstacles

Leaf obstacle SV for root goal (RDS–EPS) (%)

DriverGotLosts 6.6

StuckInTrafficJams 5.0

RideRequestCancelled 3.7

WrongContactInformation 2.0

PassengerLateAtPickupPoint 1.0

DeparturePointConfused 0.9

Requirements Eng (2013) 18:129–146 143

123



www.manaraa.com

most critical pairs among these are shown in Table 5.

Together with the critical singletons, they are the ones

having higher priority for resolution. No triple combination

excluding the preceding critical singletons and pairs was

revealed to be critical.

6.5 Discussion

Global impact analysis revealed that our ideal model is not

compliant with our probabilitic requirement of serving

95 % of encoded ride requests. In order to handle the large

number of leaf obstacles obtained, some prioritization was

required. Local impact analysis revealed critical single

obstacles and critical obstacle pairs to be resolved first in

the next phase of risk control.

Some of the leaf obstacles appeared to have more

importance than others, even if they have a small proba-

bility, especially combined with other obstacles. For

example, the obstacle DriverGotLost, with a probability of

0.06, was seen to potentially obstruct the leaf goals Achieve

[DropPointFromInstructionsReached When PassengerIn-

Car] and Achieve [DriverAtPickupPoint When Instruc-

tionsKnown]. Even if the estimated probability is low, the

obstacle might be critical. Leaf obstacles with lower

probability may thus be more important than other ones

with higher probability when they obstruct more goals; an

increase in their probability might have a major impact on

root goal satisfaction.

Critical combinations with one or two leaf obstacles

appeared to include most of the critical obstacles. Combi-

nations with more obstacles were often supersets of those

critical combinations. The resolution of critical singletons

and pairs is therefore expected to substantially reduce the

number of critical combinations of larger size.

In short, the large number of obstacles made it quite

difficult to identify the most critical obstacles to be con-

sidered first for resolution. The prioritized list of obstacles

produced by our technique helped significantly in that

direction.

7 Related work

Probabilistic fault trees are sometimes used for identifying

undesirable events in safety–critical systems [6, 24]. Low-

level events are annotated with probabilities that are up-

propagated from causing events to their consequences in

the fault tree. Unlike our refinement structures on proba-

bilistic goal/obstacle assertions, such trees are not groun-

ded on a formal framework; their nodes are just event

names and their causal links have no precise semantics. As

a consequence, the correctness of event decompositions

cannot be established and the propagation rules may appear

ad hoc. Moreover, the lack of connection with a goal model

may make it hard to identify the root events for starting

backward causal analysis.

CORAS is a UML-based risk modeling methodology

that relates assets and risks annotated with likelihoods to

support quantitative reasoning in the identify-assess-con-

trol cycle of risk analysis [26]. Such likelihoods and their

contributions have no precise semantics, grounded on a

formal framework, that would enable formal reasoning.

DDP is a lightweight, tool-supported technique for

quantitative risk analysis [13]. Goals, obstacles, and

countermeasures are called requirements, failure modes,

and PACTs, respectively. Each goal is decorated with a

weight representing its importance. Failure modes are

annotated with likelihoods. Countermeasures are decorated

with an effectiveness defined as the proportion of risk

reduction. Criticality and loss of objective are then char-

acterized as arithmetic combinations on these annotations.

Our technique builds on DDP by adding formality to

specifications, a more precise semantics for probabilities,

grounded on application-specific phenomena, and a model-

based refinement structure for propagating probabilities

through risks and consequences at various levels of

granularity.

The TROPOS goal-oriented framework is also closely

related to our efforts. It puts more focus on modeling soft

goals and reasoning qualitatively about their contributions.

TROPOS has been extended to support some form of

quantitative reasoning [15], risk assessment [4], and eval-

uation of system performance indicators [5]. In [4], goals

are called assets and are related to external events that

influence positively or negatively goal satisfaction or

denial, respectively. Influences and degrees of satisfaction

are assessed quantitatively or qualitatively. The quantita-

tive approach in [15] on which [4] and [5] are based also

relies on model-based propagation rules. However, the

considered goals and risks have no precise semantics in

terms of system behaviors; they are not measurable. The

probabilities therefore cannot be grounded on a behavioral

semantics. Moreover, the propagations do not take advan-

tage of specific types of refinement. There seems to be no

risk AND/OR-refinement structure for propagating proba-

bilities from fine-grained risks that are easier to estimate in

terms of application-specific phenomena. Lastly, probabi-

listic goals are not supported in terms of estimated versus

required probabilities of satisfaction.

In [29], KAOS goal models are extended with proba-

bilities and propagation rules for technology qualification.

The rules there appear different; they do not take advantage

of different refinement types. For example, the AND-

propagation rule in [29] does not apply to case-driven or

non-minimal refinements; the OR-propagation rule for

obstacles can be made simpler thanks to obstacle
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disjointness. Probabilistic goals as defined in our work are

not introduced in [29]; they seem not relevant to the con-

text of that work.

In [23], goals are annotated with objective functions on

random variables. The latter are bound by equations tai-

lored to corresponding refinements. Probability density

functions are propagated bottom-up to assess alternative

goal refinements. This technique enables finer-grained

analysis; it, however, requires quality variables to be

identified from the model, application-specific propagation

equations to be defined on the model, and fairly complex

computations to be performed on probability density

functions. It is targeted at selecting alternative options

rather than prioritizing obstacles by criticality.

8 Conclusion

The quantitative risk assessment technique presented in the

paper is model-based and anchored on an existing goal-

oriented framework for requirements engineering. The

framework is extended with a probabilistic layer allowing

behavioral goals to be characterized in terms of their

estimated and required degrees of satisfaction. The speci-

fication of such goals and their obstacles has a formal

semantics in terms of system behaviors, allowing proba-

bilities to be grounded on measurable, application-specific

phenomena. The severity of obstacle consequences in

terms of degree of goal violation is determined quantita-

tively and systematically by probability propagations

through the obstacle and goal models. The most critical

obstacle combinations are then determined in order to

prioritize obstacles and guide the exploration of appropri-

ate countermeasures against the more critical obstacles,

using available techniques [19], to increase requirements

completeness.

Our technique was successfully applied to two non-

trivial mission-critical systems for ambulance dispatching

and carpooling, respectively.

The use of Markov chains or Markov decision processes

as semantic models of probabilistic goal/obstacle specifi-

cations is currently being investigated to set our framework

on firmer grounds and to improve the accuracy of proba-

bility estimations. The required estimates of leaf obstacle

probabilities, based on measurable phenomena, is obvi-

ously essential and should be better supported.

A dedicated tool is also under development to replace

our current spreadsheet calculations and integrate them in

semi-formal [21] and formal [1] goal-oriented RE envi-

ronments. The transposition of our framework from

behavioral goals to measurable soft goals is also worth

considering.

A next step concerns the assessment of the cost-effec-

tiveness of countermeasures and their integration in the

goal model. The handling of uncertainty over probabilities

is another issue. Domain experts tend to provide ranges for

estimating probabilities; measurements can contain errors;

knowledge about certain probabilities might be missing.

Such uncertainty should be integrated as well.

Acknowledgments This work was supported by the European Fund

for Regional Development and the Walloon Region (TIC-FEDER

Grant CE-IQS Project). Bernard Lambeau and Christophe Damas

contributed to the elaboration of the goal and obstacle models for the

carpooling system. Thanks also to them and to Simon Busard for

inspiring discussions on our approach and to the reviewers for com-

ments calling for clarifications.

References

1. Alrajeh D, Kramer J, van Lamsweerde A, Russo A, Uchitel S

(2012) Generating obstacle conditions for requirements com-

pleteness, Proceedings of ICSE’2012: 34th international confer-

ence on software engineering, Zürich
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